Overview
Integrate LangChain agents with AgentFlow to build sophisticated AI systems that can use tools, access external data, and execute multi-step reasoning workflows.Prerequisites
LangChain Account
Sign up at smith.langchain.com
API Key
Generate API key from LangChain settings
Agent Created
Build and deploy a LangChain agent
AgentFlow Access
Admin rights in AgentFlow
Step 1: Create LangChain Agent
Setup LangChain Project
1
Install LangChain
2
Configure Environment
3
Create Agent
4
Deploy Agent
Deploy to LangChain Hub
1
Push to Hub
2
Get Agent ID
Copy the agent ID from LangSmith dashboard
Step 2: Create AI Connection in AgentFlow
Manual Configuration
- Admin Dashboard → AI Models → Add Model
-
Basic Info:
- Name:
LangChain Research Agent - Model ID:
langchain-agent-executor - Description:
Research agent with web search and calculation
- Name:
-
API Settings:
- Endpoint:
https://api.langchain.com/v1/agents/{{agent_id}}/invoke - Method: POST
- Endpoint:
-
Headers:
-
Request Schema:
-
Response Path:
data.output - Save
Step 3: Import via YAML
Complete YAML Configuration
Createlangchain-agent-config.yaml:
Import Steps
- Update
agent_idwith your actual ID - Admin Dashboard → AI Models → Import Model
- Upload YAML file
- Enter LangChain API key
- Import
Step 4: Assign to Group
- Admin Dashboard → Groups
- Select/Create group (e.g., “Research Team”)
- Manage Models → Enable LangChain Agent
- Configure access:
- Tool Access: All tools enabled
- Max Iterations: 10
- Timeout: 5 minutes
- Memory: Enabled
- Save
Step 5: Use in Chat
Agent Interactions
- Chat → New Conversation
- Select LangChain Research Agent
- Ask questions that require tool usage
Example Prompts
Understanding Agent Responses
Agent shows its reasoning process:Building Custom Tools
Tool Definition Pattern
Common Tool Types
Search Tools
- Web search (Google, Bing)
- Knowledge base search
- Document search
Data Tools
- SQL queries
- API calls
- CSV/Excel parsing
Computation Tools
- Math calculations
- Statistical analysis
- Code execution
Integration Tools
- CRM access
- Email sending
- File operations
Tool Implementation Examples
Advanced Agent Patterns
Multi-Agent Systems
Create specialized agents for different tasks:Memory Management
Configure different memory types:Custom Prompts
Optimize agent behavior with custom prompts:Monitoring & Debugging
LangSmith Tracing
View detailed execution traces:- Go to smith.langchain.com
- Navigate to Traces
- Filter by your agent
- View:
- Input/Output
- Tool calls
- Token usage
- Latency
- Errors
Error Handling
Implement robust error handling:Performance Optimization
1
Cache Responses
2
Parallel Tool Execution
3
Optimize Token Usage
- Use GPT-3.5 for simple tasks
- Implement conversation summarization
- Trim unnecessary context
Troubleshooting
Agent Exceeds Max Iterations
Agent Exceeds Max Iterations
Cause: Complex query requires many stepsSolutions:
- Increase
max_iterationsto 15-20 - Simplify the prompt
- Break into multiple queries
- Optimize tool descriptions
Tool Execution Fails
Tool Execution Fails
Check:
- Tool function implementation
- API credentials for external services
- Network connectivity
- Input parameter format
Memory Issues
Memory Issues
Symptoms: Agent forgets previous contextFix:
- Verify memory configuration
- Increase token limit
- Use ConversationSummaryMemory for long conversations
Timeout Errors
Timeout Errors
Cause: Agent takes too long to respondSolutions:
- Increase timeout in AgentFlow config
- Optimize tool performance
- Use faster LLM (GPT-3.5)
- Implement async execution
Security Best Practices
API Keys
Store securely, rotate regularly, use environment variables
Tool Access
Limit tools to necessary operations, implement access control
Input Validation
Validate all inputs before tool execution
Output Sanitization
Filter sensitive information from responses
Rate Limiting
Implement limits to prevent abuse
Audit Logging
Log all agent actions for compliance
Cost Optimization
Token Usage Strategies
-
Model Selection:
- GPT-4: Complex reasoning ($0.03/1K tokens)
- GPT-3.5-Turbo: Simple tasks ($0.002/1K tokens)
-
Prompt Engineering:
- Concise system prompts
- Efficient tool descriptions
- Clear, specific queries
-
Memory Management:
- Use ConversationSummaryMemory
- Implement conversation trimming
- Set appropriate token limits
-
Caching:
- Cache identical queries
- Store tool results
- Reuse computations